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of digital multimedia (audio and video) traffic. Evolving hardware technology will pro

vide the necessary performance. However, difficult design issues arise in the software 

structure of such a system. We consider three related issues: 1) What basic IPC abstrac

tions can accommodate the likely range of traffic types? 2) How can IPC functions such 

as security and flow control be optimally assigned to system layers? 3) How can host 

resources such as CPU time and memory be optimally allocated? 

In response to these questions, we have defined channels, an IPC abstraction with 

security, reliability, and performance parameters. The channel abstraction underpins the 

network communication architecture of DASH, an experimental distributed system. In 

DASH, IPC functions are dynamically assigned to the layer in which they can be per

formed most efficiently, and the allocation policies for kernel resources are dictated by 

the performance needs of IPC. All IPC (local and request/reply as well as multimedia) is 

handled in a single framework. 
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1. INTRODUCTION 

There is growing interest in incorporating multimedia 1 user interfaces and commun
ication into general-purpose distributed operating systems [14, 24-27]. Such a system 
could support mixed-media documents and conferencing, and might replace telephones, 
answering machines, and CD players. Wide-area networks such as Broadband ISDN 
(BISON) [8] may eventually allow these systems to be extended to a national or global 
scale. They could then subsume and integrate many existing communication media 
(mail, FAX, news and entertainment distribution) and support new applications such as 
interactive video. 

DASH [2] is an experimental distributed system that combines multimedia com
munication with traditional distributed system functions such as program execution and 
RPC-based service access. The DASH design allows the integration of multimedia com
munication, computation, and storage. For example, digital audio streams can be 
directed among audio 1/0 devices, disk files and processes in much the same way that 
byte streams are used in UNIX. 

The DASH operating system kernel provides a uniform abstract interface to net
works, manages and multiplexes network communication, and uses software to enhance 
the capabilities of network hardware. In designing the communication facilities of 
DASH, we encountered several basic issues: 

• What are the ''right'' IPC abstractions for multimedia and other traffic? A frame
work is needed in which 1) client needs can be expressed; 2) network capabilities 
can be expressed, and 3) these needs and capabilities can be compared meaning
fully. 

• How should the IPC system be layered, and how should functions such as error 
detection, security and flow control be assigned to the different layers? 

• How can the operating system best allocate its local resources (CPU time, network 
queueing, and buffer space) to support real-time IPC? This issue is crucial because 
high-speed networks will probably shift performance bottlenecks into hosts. 

To address these issues, we first developed an IPC abstraction called channels. The 
channel abstraction is used at several layers in DASH (see Figure 1a). Channels have 
security, reliability and performance parameters that are exchanged between layers. 
Using these parameters, the DASH kernel intelligently allocates local resources and 
assigns IPC functions to the layer that can do them most efficiently. Many software 
functions are consolidated in a subtransport layer that exports the characteristics of dif
ferent network hardware, yet provides a uniform interface. 

In contrast to DASH, the DARPA Internet model (shown in Figure 1b) provides an 
Internetwork Protocol (IP) layer with a datagram interface. The abstraction provided by 
IP is the lowest common denominator of the services provided by the component net
works, and their other characteristics (such as security and performance) are hidden. 
Using the IP datagram service, transport protocols provide abstractions such as reliable 
byte streams and RPC [5, 18]. This architecture facilitates interconnection, but it does 
not allow any of the characteristics of the networks to be exported to higher layers. As a 

1 We use the term multimedia to refer primarily to digital audio and video. 
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Figure 1: IPC abstractions in a) the DARPA Internet architecture and b) the DASH architecture. 

result, it cannot support general real-time communication and it is inflexible with respect 
to placement of IPC functions. 

The paper is organized as follows: Section 2 summarizes the performance require
ments of multimedia traffic, surveys relevant hardware technology, and discusses the role 
of operating systems in multimedia communication. Sections 3 and 4 describe the chan
nel abstraction and its use in the DASH communication architecture. The use of channel 
parameters in assigning IPC functions and allocating local resources is discussed in Sec
tions 5 and 6, and Section 7 gives conclusions. 

2. ARCHITECTURES, REQUIREMENTS AND RESOURCES 

2.1. The Role of Operating Systems in Multimedia Communication 

Many hardware/software architectures for multimedia communication are possible. 
At one extreme, voice and ''data'' traffic share a physical network, but have no other 
interaction (Figure 2a). The Xerox Etherphone system [25] provides a partially
integrated facility for voice communication and storage (Figure 2b ). Connection estab
lishment is controlled through a workstation-based user interface, but voice data is not 
handled by the workstation. The eLAL multimedia laboratory [14], uses an architecture 
that is similar except that a separate physical network is used. Analog video signals are 
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Figure 2: Hardware architectures for multimedia communication. 

routed through a computer-controlled crossbar switch. 

c) 
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Integration and uniformity encourage synergy among system functions. In the 
UNIX operating system [19], for example, all 1/0 traffic (network, disk, terminal, and 
graphics output) passes through the main memory of the host, under the control of the 
operating system. Exploiting this uniformity, UNIX defines a standard programming 
interface and command syntax for communication and 1/0, allowing processes to be con
veniently connected to 1/0 devices or to other processes An analogous uniformity in mul
timedia communication (Figure 2c) would 1) increase the portability and generality of 
multimedia software, 2) support applications such as video hypertext [7] that use several 
media interactively, and 3) allow multiple physical networks (e.g., FDDI and BISDN) to 
be used transparently. 

Is integrated multimedia communication technologically feasible? To address this 
question, we must first survey the performance needed by multimedia applications and 
the performance offered by evolvin'g hardware technology. 

2.2. Performance Requirements of Multimedia Applications 

In its simplest form, multimedia traffic is sent uncompressed between 1/0 devices 
(converters) that have limited buffering. Data is sent in equal-sized units at equal time 
intervals. To avoid starvation and overrun, a channel with approximately constant delay 
is needed. The required throughput varies: 64 Kbps for voice-quality audio, 1.4 Mbps for 
CO-quality stereo audio, and anywhere from 1.6 Mbps to 1 Gbps or more for video, 
depending on the resolution and frame rate. The maximum acceptable delay depends on 
the application. In voice conversations a round-trip delay of more than 50 milliseconds 
causes undesirable echo effects [15], while a delay of a second would be acceptable for 
the transmission of a recorded program or message. The error rate, message loss rate, 
and reordering requirements may also vary with the application. If video is being 
transmitted for one-time viewing, a nonzero message loss rate (resulting in frames being 
shown twice in succession) may be acceptable. The error tolerance may be lower when 
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the transmission is for archival purposes. 

Other types of multimedia traffic are bursty (i.e., have a variable data rate). The 
degree of burstiness may be expressed by deviation-to-average (DAR) or peak-to
average (PAR) ratios. Compression often introduces burstiness. For example, current 
compression techniques allow TV -quality video to be compressed to an average of 139 
Kbps to 2.7 Mbps (using different coding schemes) with DAR of 2 to 3 [16]. The bursti
ness can be reduced by dynamically varying the picture quality. Silence suppression in 
typical voice conversations reduces the data rate by about 60% and introduces burstiness 
[6]. 

The requirements of applications that generate bursty traffic vary widely. If the 
receiver has limited buffering, the variance of the delay must be limited; in the extreme 
case an isochronous (constant delay) channel is needed. Otherwise it may suffice to have 
a bound on the delay, either in a statistical sense or as a hard deadline. For interactive 
video, delay is more important than packet loss, and peak delay is more important than 
average [ 16]. 

In addition to these performance and reliability requirements, multimedia traffic 
may have security requirements such as authentication and/or privacy. Finally, most 
"conventional" digital traffic (file access, remote login, window systems, etc.) has impli
cit real-time requirements as well. For example, a moderate amount of delay (10-100 
ms) is acceptable for user interface traffic because of human perceptual limitations. The 
acceptable delay and throughput for file access depends on the client; virtual memory 
page-out will have much looser delay requirements than the page-in of an interactive pro
gram. In general, the requirements of conventional traffic are not as stringent as those of 
multimedia traffic, but the difference is quantitative rather than qualitative. 

2.3. Evolving Hardware Technology 

With the advent of fiber-optic transmission media and fast switching technology, 
next-generation networks will offer high data rates, and they may also offer real-time 
performance guarantees. As an example, Fiber Distributed Data Interface (FDDI) is a 
100 Mbps fiber-based ring network capable of supporting 500 stations on a 100 Km ring 
[20]. In its enhanced (FDDI-11) mode, it provides up to 16 "isochronous channels" of 
6.4 Mbps, "synchronous frames" with a small delay bound, and multiple priorities for 
other packets. On a larger scale, Broadband ISDN (BISON) is an evolving international 
standard for fiber-based commercial networks [8, 11]. Standard channel bandwidths of 
150 Mbps and 600 Mbps have been proposed. With both FDDI and ISDN, clients must 
' 'reserve'' channels in advance. 

Equally importantly, the performance of host 1/0 systems is increasing as well. 
Throughputs of 100 to 500 Mbps or more have been achieved or predicted for the major 
hardware components: memory busses [28], network interfaces [12], and permanent 
storage [17]. 

2.4. The Window of Scarcity 

The general task of an operating system is to satisfy client needs using hardware 
resources. This is impossible if the needs exceed the resources (see Figure 3). If there 
are abundant resources, hardware is always fast (or capacious) enough to satisfy needs. 
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In the middle area, which we call the window of scarcity, the operating system must 
require clients to reserve resources, and carefully schedule resource usage, in order to 
satisfy typical client needs. 

Based on the above discussion, we conjecture that the task of providing integrated 
multimedia communication is in the window of scarcity, and will remain there for at least 
the next 10-15 years. The demands of multimedia applications (and the scale of distri
buted systems) will increase at roughly the same rate as hardware capabilities. To satisfy 
client needs, if this conjecture holds, the hardware resources of the system (local and/or 
network) will have to be allocated and scheduled according to those needs. 

3. CHANNELS: AN ABSTRACTION FOR REAL-TIME IPC 

If a distributed system is to provide integrated multimedia communication, what 
IPC abstractions should be used? If the system is to function within the window of scar
city, the IPC abstraction must be parameterized to allow the expression of client needs 
and hardware capabilities. Abstractions built on datagrams (or virtual circuits) therefore 
cannot suppon multimedia communication in this case. 

DASH uses an IPC abstraction called a parameterized message channel, or simply a 

channel [4]. A channel is simplex (unidirectional) entity2 that carries messages (untyped 
byte arrays) from a sender to a receiver. The sender and receiver entities (processes or 
hosts) are called clients, and the system supponing the creation and use of channels is the 

requirements 
(per,(o~nce,scale) 

network 
file access 
remote 
login 

insufficient 
resources 

1980 

scarce 
resources 

1990 

abundant 
resources 

Figure 3: The window of scarcity. 

2000 
hardware 
resources 
in year X 

2 Channels are simplex because real-time traffic is often asymmetrical, as when audio data is downloaded from a 

data server. Asymmetrical channels (600 Mbps towards the "customer", 150 Mbps the other way) have been pro

posed for BISDN [11]. 
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provider. A client of one level may be a provider to a higher level. A channel C has a 

set of parameters Pc describing its security, workload, performance, reliability and error 
characteristics. The parameters are fixed for the life of the channel. 

To relate needs and resources, we need a basis for comparing parameter sets. For 

this purpose, a relation ~ is defined on parameter sets. If P 1 ~P 2 holds then P 2 is at least 
as good as P 1; i.e., P 2 is acceptable to a client whenever P 1 is acceptable. In cases where 
billing is done, P 1 must be no more expensive than P 2• ~ is a partial order; two parameter 

sets may be incomparable under~. 

A channel creation request includes parameter sets P min• P ,.,,.,, and P max· P min is the 
minimal needs of the client, and p max is the maximum he is willing to pay for. The actual 
parameter set p of the resulting channel must satisfy p min~ p ~ p max; the request is rejected 

if this is impossible. The P ,.,,., parameters are a "hint" to the channel provider, which 

tries to match them as closely as possible3. The creator of a channel (which may be 

either the sender or the receiver) is ''billed" for the channel, if such a notion exists. 

A channel fails when one of the clients' hosts crashes, or when a failure or resource 
scarcity in the network makes it impossible to continue providing the channel. When a 

failure occurs no further messages are delivered, and the surviving channel clients are 
notified of the failure. 

3.1. Channel Parameters 

A given parameter is either a provider parameter or a client parameter, depending 

on who is responsible for enforcing it. When a client violates a restriction, the provider 
might 1) notify the client; 2) temporarily suspend the offending send operation; 3) drop 

messages; 4) cancel some or all of the channel guarantees; 5) close the channel. The 

choice is itself a parameter, as is the choice of whether the provider is responsible for 
notifying the client if it fails to satisfy a guarantee. 

What should be the set of channel parameters? Our criteria, roughly speaking, are 

that a property should be a parameter if: 1) some clients need it, but not all; 2) some net

works provide it, but not all; 3) it is potentially expensive to provide it in software. We 

have chosen the following basic channel parameters: 

parameter units responsibility 

maximum message size bytes client 
authentication Boolean provider 
privacy Boolean provider 
sequenced Boolean provider 
acknowledgements Boolean provider 
bit error rate probability provider 

The ~ relation involves these parameters in the obvious way. P 1 ~P 2 only if the 

parameters of P 1 are at least as "strong" as those of P 2 (e.g., P 2 must sequenced if P 1 is). 

3 The design could be extended to allow multiple minimum and maximum parameter sets; the actual channel 

would be required to lie between some pair of minimum and maximum parameter sets. 
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There are many possible ways to parameterize the performance and workload of a 

communication channel. We chose a set of parameters that can express the needs of 

most types of multimedia traffic, and can express the facilities of some existing and pro
posed networks. 

_parameter units responsibility 

delay bound seconds provider 
delay mean bound seconds provider 
delay variance bound seconds provider 
average workload bits/second client 
peak workload bits/second client 
average loss rate probability provider 
peak loss rate probability provider 
channel class (see below) 

The loss rates are the probability that a message is not delivered. (This loss may be due 

to buffer overrun or to checksum errors). The meaning of a channel's performance 

parameters depend on its class: 

Guaranteed: the provider reserves all resources necessary to guarantee the perfor

mance parameters. A channel creation request is not granted if there are insufficient 
resources. 

Best-available: like guaranteed, except the provider does not control all the 

resources used for the channel. As an example, hosts could provide a channel of 

this class over an Ethernet. The Ethernet media access protocol has no real-time 
guarantees [22], but the hosts can use the channel parameters to schedule the 
resources they do control: queueing priority and buffer space. 

Best-effort: requests are always granted. The provider does not necessarily reserve 

resources (hosts and networks determine their own policies for dealing with starva

tion of best-effort channels). Delay bound parameters are used for scheduling 

(CPU, network queueing) based on message delivery deadlines (see Section 6). 

A complete definition of ~ is beyond the scope of this paper. The ~ relation can 

only hold between classes in the following order: 

best-effort~ best-available ~guaranteed 

Thus, a best-effort channel can never be substituted for a guaranteed channel, regardless 

of their parameters. 

3.2. Examples of Channel Parameter Usage 

Using the channel parameters listed above, one can express the multimedia perfor

mance requirements and resources discussed in Section 2 (for example, a periodic iso

chronous channel is sequenced, has zero delay variance, and has equal peak and average 

workloads). Using the best-available and best-effort classes, one can express the charac

teristics of channels in nondeterministic networks. The best-effort class can be used to 

express the needs of clients whose workload is unpredictable, that do not have rigid 

requirements, and for which resources should not be reserved. 
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Channel parameters are useful for non-multimedia traffic as well. For example, a 

request/reply protocol [23] can use channel parameters to assign appropriate message 

delay bounds (initial requests and replies have tighter bounds than retransmissions and 

acknowledgements) and to obtain appropriate retransmission intervals. It is not neces
sary to create a new channel for each operation; for example, the DASH RPC facility 

uses a set of long-lived ST channels. Stream protocols can potentially use channels to 

achieve greater performance or economy. A stream protocol for bulk data transfer [9] 

should use a high capacity, high delay channel for data. Acknowledgement and 

retransmission strategies can be simplified since round-trip delays may be estimated from 

channel parameters. 

We will describe in later sections how an operating system can use channel parame

ters to intelligently assign IPC functions and schedule resources. In addition, the channel 

architecture may simplify the design of high-speed wide-area networks. Because work

load information is available to the network, new approaches to routing, queueing, and 

congestion control may be possible [10]. 

4. THE DASH NETWORK COMMUNICATION ARCHITECTURE 

The channel abstraction provides a basis for 1) optimal assignment of IPC functions 

to layers, and 2) optimal allocation of local resources. This is illustrated by the design of 

DASH, described in this section. The DASH network communication architecture [3] is 

based on channels. It consists of several layers (see Figure 4). 

functions 
(ifneelkd) 

mechanisms 
(if needed) 

channel, request/reply interfaces retransmission 

:=~----------\.--'---i'---'-+---~----==~1----------------------==::: :\ 
channel interface security encryption 

integrity checksumming 

subtransport increase message size fragmentation 
layer reduced channel establishment channel multiplexing 

network 
layer 

channel interfaces 

DD 

failure detection channel caching 
fast acknowledgements 

hardware encapsulation physical security 
link-level acks 
link-level security 

Figure 4: The DASH Communication Architecture. 
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The network layer encapsulates network-specific hardware and protocols. A 
DASH network is a logical entity (LAN, MAN, WAN, or internetwork) that provides 
channels. Each network to which a DASH host is connected is represented in its kernel 
by a software module exporting a standard interface offering host-to-host network chan
nels. These modules encapsulate network-specific protocols for channel creation, dele
tion, and data transmission, as well as tasks such as routing and network management. 
They export flags (used by the subtransport layer to select security mechanisms) indicat
ing whether hosts on the network are trusted, and whether the network is a physical 
broadcast network. A network supplies only those channel classes and parameters that it 
can support in hardware. For example, it provides security only if it is physically secure 
or does link -level encryption. 

The subtransport layer (ST) manages, abstracts, and enhances the resources pro
vided by the network layer. The ST provides ST channels. It uses software techniques to 
satisfy the client's error rate and security requirements, and to increase efficiency (see 
Section 4.1 ). 

Clients (kernel and user processes) may directly create and access ST channels. If 
needed, protocols in the transport layer may be added to provide flow control and/or 
reliability. DASH RPC is a standard transport protocol. It provides a request/reply inter
face, and uses a set of ST channels whose parameters are chosen to optimize the protocol 
(see Section 3.2). 

At higher levels, the DASH communication architecture includes 1) a service 
access mechanism providing a uniform interface to network services and other logical 
resources, and 2) a global naming system used to name lorig-lived entities such as hosts, 
services, and owners. The naming system is also a public key server (underpinning the 
ST's security mechanisms) and maps host names to network addresses. 

The above layers involve network communication. Channels can also be used for 
communication between processes on a single host, in which case the role of the channel 
is to establish process scheduling deadlines. 

4.1. The Functions of the Subtransport Layer 

The ST layer plays three important roles in the DASH architecture. First, it pro
vides a single standard interface to networks, even if a host is connected to multiple dis
similar networks. In this sense it is analogous to the IP layer of the Internet architecture. 

Second, the ST acts as resource manager for network communication, matching 
client needs to network resources. The ST multiplexes ST channels onto network chan
nels, and caches network channels (retaining a network channel even while it is not being 
used by any ST channel). This can reduce overhead and delay compared to a policy of 
creating a network channel for each ST channel, assuming that 1) during a short time 
period a host will tend to communicate repeatedly with a small set of remote hosts; 2) it 
is relatively costly to create network channels. The parameters of an ST channel may be 
different than those of the network channel on which it is multiplexed. The ST uses the $; 

relation in making multiplexing decisions; other policies (such as how much excess capa
city to allocate when a network channel is created, and how long to maintain idle net 
channels) are host-dependent. 
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Third, the ST uses software techniques to "enhance" network channels, bridging 
the gap between client needs and network facilities. The channel-enhancement functions 
include the following (see [3] for a complete list): 

Security and Reliability: If an ST channel has stricter security or reliability 
requirements than its network channel, the ST uses the most efficient method 
(encryption, cryptographic checksumming, checksumming, or encrypted trailer) to 
bridge the gap. These methods provide host-to-host security. The ST also allows 
clients to authenticate individual security principals. It maintains a "cache" of 
principals who have been authenticated to or from each host with which it has com
municated. 

Increased Maximum Message Size: The ST does fragmentation and reassembly, 
reducing the number of high-level messages and hence protocol processing and 
scheduling overhead. The maximum message size of an ST channel may be larger 
than that of its network channel, but not so large that the ST is forced to use 
retransmission or flow-control mechanisms to satisfy other requirements. 

Client process parallelism and multiplexing: The ST's CPU-intensive tasks 
(checksumming and encryption) are done in parallel on multiprocessors. The ST 
manages this parallelism, using either client processes or its own "worker" 
processes. The ST also allows the sender to specify a process to awaken on mes
sage receipt (this is used for RPC reply messages, which are carried on a s;:1gle ST 
channel but are directed to one of many client process). 

In typical systems, the functions of ST are done at the transport or network levels. 

By centralizing the functions in the ST, the DASH architecture allows some of them to 

be done more efficiently. For example, a single secure channel between hosts can be 
maintained more efficiently than one per operation or session [1]. Furthermore, the ker
nel is smaller and simpler because functions are consolidated in a single module, rather 

than implemented separately in multiple transport or network modules. 

Mechanisms for reliability and flow control are omitted from the ST because there 

are many tradeoffs and design decisions in these mechanisms, and we did not want to 
hardwire them into the ST. 

5. ASSIGNMENT OF IPC FUNCTIONS 

The DASH architecture gives the system two important degrees of freedom in sup

porting communication. First, the ST can choose the best network to use for each chan

nel. For example, suppose a DASH host is connected to a MAN that is part of an inter

network and supplies its own native protocols as well. The native protocols provides a 

greater range of channel parameters than those of the internetwork. The host would view 

these as separate networks, represented by a MAN module and an internetwork module. 

The ST would use the MAN in preference to the internetwork for channels to hosts on 
the MAN. 

Second, the DASH architecture allows communication functions such as flow con

trol, error recovery, and security to be handled optimally, according to the following 

principles: 

• If the function is not needed, it is not performed at all. 
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• If the function is needed, it is assigned to the layer that can do it most efficiently. 

For example, suppose a client requires data privacy. It requests an ST channel with 
the private attribute. ST creates a new ST channel, multiplexing it onto a network chan
nel. Several scenarios are possible: 

(1) If the network is physically secure, no data encryption is done at any level. 

(2) If the network has link-level encryption hardware, ST learns this from the net
work channel parameters, and does no data encryption. 

(3) Otherwise privacy is provided by the ST using data encryption. 

In any case, the optimal mechanism is used. If a client does not require privacy, no 
mechanism is used (which is again optimal). 

Next, consider data integrity (bit error rate). In some architectures this is provided 
by checksumming in transport protocols. However, multimedia applications may tolerate 
errors, and in any case fiber optic networks may offer bit error rates so low that check
summing is not needed [21]. If encryption is being done at some level (see above) 
checksumming is not needed since encryption also provide error detection. Again, the 
DASH architecture allows the optimal choice to be made. 

Finally, consider flow control (i.e., workload enforcement). This is the responsibil
ity of the channel client. Depending on the channel parameters and the speeds of the data 
source and sink, a flow control mechanism may be unnecessary. If so, transport proto
cols can be simplified and made more efficient (or eliminated altogether). 

6. LOCAL RESOURCE ALLOCATION 

End-to-end network IPC involves resources local to the sending and receiving hosts 
(buffer space, CPU time, 1/0 bus bandwidth, and so on). With increasing network 
speeds, these resources will often be the performance bottleneck, so their allocation 
determines the performance available to users. In this section we sketch the resource 
allocation policies of the DASH kernel. 

When a channel is created in DASH, its mean delay is divided among its various 
stages. (In the case of an ST channel, these stages include ST send processing, network 
queueing, network transmission, ST receive processing, and receiver process scheduling 
delay.) When a message is sent on a channel, there is a deadline by which it must be han
dled by the next stage (i.e., processed by a protocol, sent on a lower-level channel, or 
transmitted on a network medium). To a first approximation, this deadline is the current 

real time plus the delay allocated to the next stage4. These deadlines are used to priori
tize resource usage (i.e., the order in which queued messages are transmitted, and the 
order in which processes are executed). 

This strategy is an extension of deadline-based process scheduling [13], and shares 
its property of meeting deadlines if possible. However, the existence of multiple channel 
classes adds complexity. Guaranteed and best-effort messages may have intermixed 
deadlines, but best-effort traffic must not interfere with guaranteed traffic. DASH 
addresses this problem by using channel class to prioritize traffic, and using deadlines to 

4 The deadline could also reflect the amount by which the message is ahead of, or behind, schedule. 
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prioritize traffic within a class. For example, the DASH network module for Ethernet 

supports best-available and best-effort channels. The module maintains separate queues 

for outgoing packets of each class. Since the size and deadline of each packet are known, 

a "maximum start time" can be computed. A best-effort packet is transmitted only if it 

will finish before the earliest deterministic packet maximum start time (see Figure 5). 

The DASH process scheduler also uses a hybrid priority/deadline mechanism. 

Processes involved in IPC are labeled by their channel class, and are assigned deadlines 

based on channel parameters. The scheduler maintains two deadline-sorted queues of 

runnable processes, one for best-effort and one for guaranteed and best-available. The 

scheduling policy is to run the process with the earliest deadline, except if the current 

real time exceeds the maximum start time of a higher-priority process. In some cases it 

is necessary to reserve a fraction of the sender and/or receiver host's total CPU time for a 

channel when it is created. 

To demonstrate the effectiveness of these policies, we set up an experiment using 

the DASH kernel running on Sun 3/50 workstations connected by a dedicated 10 Mbps 

Ethernet. A single guaranteed channel with a delay bound of 10 ms and a periodic work

load (a 1 Kbyte message every 10 ms) competes with random (Poisson) traffic on a best

effort channel. This is representative of a combination of high-quality audio channel and 

other traffic (file access, for example). As shown in Figure 6, the delay of the guaranteed 

channel remains below 10 ms, while the delay of the best-effort channel becomes infinite 

when its workload exceeds the remaining available throughput. The bottleneck resource 

in this case was CPU time. With faster CPUs, the network queueing policy would be 

exercised instead. 

maximum start time 

guaranteed packets ~ 02 

best-effort packets Bl B2 

transmission order Bl II 01 II 02 II B2 

time 
current time 

Figure 5: The queueing policy for guaranteed and best-effort packets. D2 is transmitted 

before B2 even though its deadline is later. 
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...... . . ' . 
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Figure 6: A demonstration of the DASH queueing mechanisms. 

7. CONCLUSION 

Successive generations of operating systems have been characterized by their IPC 
paradigms: byte streams, RPC, object invocation, and so on. The next generation of dis
tributed operating system must support multimedia IPC, allowing application programs 
to direct streams of digital audio and video data between 1/0 devices, processes, per
manent storage, and remote hosts. We have proposed channels as a standard IPC 
abstraction for such systems. Channels allow the client and the provider to negotiate per
formance, workload, reliability and security parameters. The abstraction provides a flexi
ble parameterization, so that new network types, new 1/0 technologies, and new applica
tions can be integrated easily. 

We have also described the channel-based DASH communication architecture. 
Channel parameters in three ways in the DASH architecture: 1) they dictate how user
requested channels (ST channels) can be multiplexed onto network channels. 2) they 
dictate whether IPC functions (security, data integrity, flow control) are needed, and if so 
they determine the optimal layer in which to perform the function; 3) they allow local 
resources such as network bandwidth and CPU time to be scheduled intelligently. 

The design described in this paper is still a rough framework. Many issues remain: 
1) different performance parameters may be needed; 2) the restriction that parameters are 
fixed during the life of the channel may not be reasonable in the presence of network 
congestion and changing buffer sizes; 3) we have neglected bounds on setup time of 
channels and on the expected lifetime of channels; 4) multicast is absent from the design, 
and it is likely that some multimedia applications (e.g., broadcasts of TV programs) will 
require multicast services at a low level; 5) the design of programmer and user interfaces 
based on channels remains to be investigated. 
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